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Abstract The in-flight calibration and performance of the Solar Disk Imager (SDI), which is a pivotal 

instrument of the Lyman-alpha Solar Telescope (LST) onboard the Advanced Space-based Solar 

Observatory (ASO-S) mission, suggested a much lower spatial resolution than expected. In this 

paper, we developed the SDI point-spread function (PSF) and Image Bivariate Optimization 

Algorithm (SPIBOA) to improve the quality of SDI images. The bivariate optimization method 

smartly combines deep learning with optical system modeling. Despite the lack of information about 

the real image taken by SDI and the optical system function, this algorithm effectively estimates the 

PSF of the SDI imaging system directly from a large sample of observational data. We use the 

estimated PSF to conduct deconvolution correction to observed SDI images, and the resulting 

images show that the spatial resolution after correction has increased by a factor of more than three 

with respect to the observed ones. Meanwhile, our method also significantly reduces the inherent 

noise in the observed SDI images. The SPIBOA has now been successfully integrated into the 

routine SDI data processing, providing important support for the scientific studies based on the data. 

The development and application of SPIBOA also pave new ways to identify astronomical telescope 

systems and enhance observational image quality. Some essential factors and precautions in 

applying the SPIBOA method are also discussed. 
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1 INTRODUCTION 

The Advanced Space-based Solar Observatory (ASO-S; Gan et al. 2019, 2023), launched on 2022 October 9, is 

the first comprehensive Chinese space observatory dedicated to observations of the Sun. The Lymanalpha Solar 

Telescope (LST), characterized by its unique observations in the Hydrogen Lyman-alpha line (121.6 nm), the most 

intensive line in ultraviolet (UV) band of solar spectrum, from disk center to inner corona up to 2.5 solar radii, is 

one of the three payloads onboard ASO-S mission and was described in detail in Li et al. (2019) and Chen et al. 

(2019). Here, we provide brief introduction to the LST payload, which is essential for readers to understand the 

study in this paper. 

The LST payload comprises three instruments: 

• White-light Solar Telescope (WST): With an aperture of 130 mm, the WST works in the 360.0±1.9 nm 

waveband to observe white-light flares on the Sun with a field of view (FOV) up to 1.2 solar radii. The highest 

cadence of WST is 1 – 2 seconds in burst mode. 

• Dual-channel Solar Corona Imager (SCI): Featuring an aperture of 60 mm, the SCI works in both the 

Hydrogen Lyman-alpha (SCIUV: 122.2±3.9 nm) and the visible (SCIWL: 704.1±31.3 nm) wavebands to 

captures coronal mass ejections (CMEs) and other activities within the inner corona up to 2.5 solar 

radii. 

• Solar Disk Imager (SDI): The SDI has an aperture of 68 mm and works in the Lyman-alpha waveband similar 

to SCIUV but with slightly different central wavelength and width (120.8±4.5 nm). It is used to observe various 

activities on the solar disk with the same FOV as the WST. 

The in-flight calibration and performance of the LST have been successfully completed and presented in Chen 

et al. (2024). Readers are referred to it for detailed information. 

SDI is proposed to image the Sun with a spatial resolution of 1.2′′ and a cadence of as high as 4 seconds in burst 

mode and a lower cadence (say 60 seconds) in routine mode depending on the available telemetry (Li et al. 2019; 

Chen et al. 2019). As outlined in Chen et al. (2024), in-flight observations revealed a much lower spatial resolution 

than expected, which is measured to be approximately 9.5′′ based on first-light images captured on 2022 October 

26. One potential cause suggested is wavefront errors in the entrance Lyman-alpha filter, which could lead to 

defocusing and subsequent image blurring. However, it’s important to note that other factors can also contribute to 

such a low measured spatial resolution, including, but not limited to, aberrations imperfections in the optical 

components of the instrument. To determine the exact causes of the lower resolution is beyond the scope of this 

paper. 

SDI images sometimes exhibit horseshoe-like bright structures, as illustrated in the white rectangular area of 

Figure 1. These structures, together with the low spatial resolution, significantly affect research efforts related to 

the scientific objectives of LST, including the evolution and eruption of filaments/prominences, the characteristics 

of flares and the source regions of CMEs in the Lyman-alpha line, the parameters and triggering mechanisms of 

solar flares, and potential wave phenomena in the Lymanalpha line on the solar disk (Li et al. 2019; Feng et al. 

2019). Therefore, it is crucial to mitigate or eliminate these structures and enhance image quality (in terms of 

spatial resolution, noise reduction, etc.) through various algorithms. A comparison of SDI images with those 

captured by the Atmospheric Imaging Assembly 

(AIA, Lemen et al. 2012) on the Solar Dynamics Observatory (SDO, Pesnell et al. 2012) in the 304 A and˚ 
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Fig.1: A cutout of SDI sample image showing ‘horseshoe’brightenings. 

 

Fig.2: Comparison of AIA 304 A(left), SDI (middle) and AIA 1600˚ A (right) images at 18:07 UT on 2023˚ March 

19. 

1600 A channels, as shown in Figure 2, reveals that the sharp, bright structures in the AIA images appear˚ diffused 

and blurred in the SDI images, further emphasizing the necessity to improve the quality of SDI images. 

One promising algorithm to enhance image quality relies on deep learning techniques (LeCun et al. 2015), 

which have experienced rapid advancements in recent years and had widespread applications in astronomical 

adaptive optics. In this paper, we leverage deep learning techniques and in-flight observational data, taking into 

account the optical design of the SDI, to estimate the wavefront aberration of the SDI imaging system, and 

subsequently apply the results to observational data to improve image quality. The reconstructed images exhibit 

significant quality improvement compared to the original ones, demonstrating the feasibility of our proposed 

method. 

This paper is organized as follows. Section 2 introduces the development and application of adaptive optics 

and wavefront sensing technologies based on deep learning. We describe our basic methodology and estimate the 

point-spread function (PSF) of SDI imaging system in Section 3, and delineate our experiment and analysis in 

Section 4. In Sections 5 and 6, we present our discussions and conclusions, respectively. 
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2 DEEP LEARNING FOR ADAPTIVE OPTICS AND WAVEFRONT SENSING 

As a core technology of artificial intelligence, deep learning has significant advances in many fields, including 

computer vision, natural language processing, bioinformatics and drug discovery (LeCun et al. 2015). Deep 

learning, powered by artificial neural networks, is accomplished in processing complicate data through its ability 

to learn sophisticated multi-level representations and abstractions. These multiple layers of nonlinear 

transformations, also known as deep neural networks (DNNs), enable the extraction of intricate patterns from data. 

Improving the accuracy and sensitivity of wavefront sensors in adaptive optics systems through deep learning 

not only represents a developmental trend in the field but also may establish a novel domain within its applications. 

This is to enhance wavefront detection accuracy and expand the capability of wavefront sensors to handle complex 

scenarios. 

Deep learning technology was first applied to astronomical adaptive optics in the early 1990s, marking a 

significant development in the field. Angel et al. (1990) successfully used artificial neural networks to correct for 

piston and tip/tilt aberrations in the Multiple Mirror Telescope (MMT), mitigating the effects of turbulence and tilt 

between mirrors. Sandler et al. (1991) further applied neural network wavefront detection on a 1.5 m single-mirror 

telescope at the Phillips Laboratory of the United States Air Force. This technique was later extended to the Hubble 

Space Telescope (Barrett & Sandler 1993) for estimating static aberrations, demonstrating its adaptability to 

complex applications and its emergence in a novel application domain. 

Recent advancements in deep learning adaptive optics have led to significant breakthroughs, improving 

observation accuracy, extending range, enhancing cost-effectiveness, and broadening applicability, ultimately 

strengthening astronomical observations. Notably, Nishizaki et al. (2019) introduced a machine learning based 

wavefront sensor that streamlines optical hardware and image processing, demonstrating the ability to estimate 

Zernike coefficients directly from single images using convolutional neural networks (CNNs). They also 

demonstrated that the sensor could be trained to estimate wavefront distortions from both point and extended 

sources. 

Niu et al. (2020) explored deep learning algorithms for interferometric wavefront detection, accurately 

extracting phase distribution and analyzing distortions under general conditions. Their method has been 

experimentally validated for higher measurement accuracy, faster computation, and excellent performance in noisy 

conditions. A deep learning based method was proposed by Wang et al. (2021) for wavefront sensing and aberration 

correction in atmospheric turbulence. They successfully recovered the wavefront distortion phase from distorted 

images and corrected them using spatial light modulators, significantly improving image quality and resolution, 

providing a new solution for adaptive optical systems. Furthermore, de Bruijne et al. (2022) investigated deep 

learning wavefront sensing for extended sources, integrating blind deconvolution with deep learning to process 

Shack-Hartmann sensor images, which enhances precision and reliability in complicate application scenarios and 

wavefront distortions. Lastly, Ge et al. (2023) presented a targetindependent dynamic wavefront sensing method, 

which employed a distorted grating and deep learning to enable real-time detection and correction of aberrations 

across various and dynamic environments. 

Recent researches in wavefront sensing using deep learning, as mentioned, have yielded significant 

achievements and wide-range practical applications. These studies not only introduce innovative methods and 

songyongliang
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Fig.3: Flow chart of instrumental psf estimating process. 

technologies but confirm their practicality and efficacy through experimental validation as well. These findings 

are pivotal for advancing astronomical adaptive optics and wavefront sensing technologies. Moreover, they offer 

invaluable insights into our research to enhance the quality of SDI observational images through wavefront 

aberration correction. 

3 INSTRUMENTAL POINT SPREAD FUNCTION ESTIMATE 

This section outlines the fundamental approach and method for applying deep learning techniques in our study, 

along with the process for estimating the instrumental point spread function (psf ). 

To mitigate the risk of unpredictable nonlinear distortions, we chose to keep the SDI optical imaging system 

within the linear convolution domain. By employing a structured approach, we apply a bivariate optimization 

strategy to simultaneously estimate both the true SDI image Iref  and the psf , which are unknowns in our calculations. 

We translated the psf estimation into a wavefront estimation of the imaging system so as to effectively leverage 

the optical parameter information from the SDI imaging system. 

Unlike the deep learning based methods for imaging system estimation reviewed in Section 2, we do not use 

CNN for direct wavefront prediction. Instead, we utilize CNN to apply nonlinear transformations to high-quality 

observational images with similar characteristics, such as those from AIA 304 A channel, to˚ generate ideal SDI 

reference images that comply with the linear constraints of the optical system. The CNN used in this study denoted 

with N(I304,ΘN) is a standard multi-layer CNN with an input layer consisting of 1 to 64 convolutional kernels, 

which transform the input image I304 into 64 feature maps. N(I304,ΘN) contains 72 hidden layers with a width of 64. 

The output layer uses 64 to 1 convolutional kernel to transform the 64 feature maps into the output image Iref. The 

algorithmic process for estimating the psf of the SDI imaging system is illustrated in Figure 3. 
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The objective of the optimization is to iteratively refine the parameter ΘN of the convolutional neural network 

N(I304, ΘN) and the value of the wavefront to minimize the error defined by Equation (1), ensuring that the 

convolution of the ideal SDI image Iref  with the system’s psf aligns with the actual observational data ISDI, thereby 

enabling an accurate estimation of the psf . 

 e =      min      ||ISDI − Iref ⊗ psf ||2 
ΘN,wavefront 

The ideal SDI image Iref is output by the neural network N(I304,ΘN) (Equation (2)). 

(1) 

Iref = N(I304, ΘN) 

The system’s psf is calculated from the generalized pupil function defined by Equation (3): 

(2) 

 psf                           
 wavefront

 (3) 

The ΘN in these equations denotes the parameters of the CNN, while wavefront refers to the wavefront 

aberration, identified as the variable to be optimized and highlighted in the red square in Figure 3. The term A 

stands for the aperture transmission, which equals 1 inside the aperture and 0 outside, assuming uniform 

transmission. The function F() denotes the Fourier transform, while the symbol ⊗ signifies the convolution 

operator. 

Figure 3 depicts the processing steps of the SPIBOA (SDI PSF and Image Bivariate Optimization Algorithm). 

The algorithm’s detailed procedure is as follows: 

1) Data Preprocessing: coalign the images of SDI and AIA, and suppress noise in the SDI observational images. 

2) Initialize Iref with the AIA 304 A image˚ I304 and the wavefront with the data gleaned from pre-launch 

(on-ground) tests of the SDI flight model. 3) 

Calculate the error 

 e = || SDI − Iref ⊗ psf  ||2 (4) 

4) By propagating the error e backward, the stochastic optimization algorithm (Adam) algorithm (Kingma & Ba 

2014) is utilized to update the optimization targets, namely Iref and wavefront. 

5) If e is less than the predefined threshold, terminate the iteration and output the psf . Otherwise, continue iterating 

and return to step 4). 

SPIBOA accepts SDI and AIA 304 A observational images with aligned FOV and suppressed thermal˚ noise 

as input. It employs the Adam algorithm to jointly refine the wavefront aberration (wavefront) and the parameters 

of the CNN (ΘN). By minimizing the error defined in Equation (1), SPIBOA derives an estimate of the ideal SDI 

image ( Iref) and the wavefront aberration (wavefront). Subsequently, it computes the psf of the SDI observational 

system using Equation (3). This psf is then utilized for deconvolution of the observed SDI images to enhance their 

quality. 

Figure 4 depicts the intermediary results of the SPIBOA training procedure. Panel (a) displays the ISDI from the 

training dataset, while panel (b) shows the result of the convolution between Iref  and psf . Panel (c) presents 
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Fig.4: Intermediate Results of SPIBOA Training Process. (a) SDI observational image for training; (b) Iref ⊗ psf ; 

(c) Iref ; (d) I304 ; (e) SDI observational image for testing; (f) deconvolution of the test image with the obtained psf ; 

(g) wavefront generated by SPIBOA; (h) psf obtained from the wavefront using Equation (3). 

the Iref,  generated by the CNN N(I304,ΘN), and panel (d) gives the initial value of Iref, namely I304. 

The resemblance between panels (b) and (a) suggests that the optimal solution derived by SPIBOA aligns with 

the SDI imaging model. Panels (e) and (f) present a test sample that was excluded from the training phase, together 

with its deconvolution outcomes, thereby implying the generalization capability of SPIBOA. Panel (g) presents 

the wavefront optimized by SPIBOA, wheras panel (h) displays the psf derived from this wavefront based on 

Equation (3). This psf is consistent with the anomalous ‘horseshoe’ structure depicted in Figure 1, suggesting that 

the estimation of the psf is reasonable. 

4 EXPERIMENT AND ANALYSIS 

We use the psf derived from SPIBOA to make deconvolution correction to actual SDI observational images 

utilizing the Richardson-Lucy iteration algorithm (Richardson 1972), and present the results in Figure 5. Panels 

(a) and (b) in Figures 5 show the full-disk images of the Sun before and after correction, respectively, while panels 

(c) and (d) provide comparisons of subareas (corresponding to the red-boxed regions), revealing enhanced clarity 

and effective noise reduction in the corrected images. Figure 5(e) displays the psf estimated by SPIBOA, which 

closely matches the distinctive ’horseshoe’ pattern observed in the SDI images, indicating a reasonable and 

accurate estimation. Figure 5(f) shows the power spectral density profiles of the images in panels (c) and (d), which 

demonstrate a significant increase in mid- to high-frequency energy in the corrected image compared to the 

observed image, quantitatively validating the improvements in clarity and contrast. 
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Fig.5: Deconvolution with PSF obtained by SPIBOA and power spectrum. (a) SDI observational image; (b) 

deconvolution image; images in panels (c) and (d) correspond to the sub-region denoted by the red box in panels 

(a) and (b), respectively; (e) The psf obtained from SPIBOA; (f) The power spectral density profiles of image in 

panel (c) (green) and panel (d) (red); the abscissa in (f) stands for normalized frequency while the ordinate for 

power density. 

 

Fig.6: Observed SDI image (left) and reconstructed one (right) taken at 21:41:28 UT on 2024 May 8. 

To quantitatively assess the effect of image correction, we employed a series of flare images with varying 

intensities to measure the resolution improvement after correction. We use the Spatial Image Resolution 

Assessment by Fourier Analysis (SIRAF) technique (Brostrøm & Mølhave 2022) to conduct the resolution 

evaluation of SDI images. Our quantitative analysis indicates an enhancement in spatial resolution by a factor of 

more than three after correction, as outlined in Table 1. The table provides basic information of four flares, 
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including the estimated spatial resolution before and after correction, as well as the factor of improvement in spatial 

resolution. 

 

Fig.7: Spatial resolution estimate with SIRAF of SDI image obtained on 2024 May 8. (a) selected region of SDI 

image filtered using a Hanning window; (b) FFT transformed image in the frequency domain; (c) results of the 

fitting of the PSF function: its abscissa and ordinate indicate the normalized frequency (in unit length of the 

reciprocal of image size) and amplitude, respectively. The blue line represents the amplitude spectrum, and the red 

dashed line represents the fitting curve. 

 

Fig.8: Same as Figure 7 but for the corresponding reconstructed image. 
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Figures 6 to 8 present resolution comparisons of SDI images before and after correction for the GOES X 1.0 

flare of 2024 May 8 in Table 1. Figure 6 displays the full-disk images before and after correction. In Figures 7 and 

8, panel (a) shows the windowed images of 800 by 800 pixels, starting at [1600, 1600] in image coordinates, which 

are used for resolution estimations, and panel (b) the Fourier spectra of these 

 

Fig.9: Comparison of (a) original and (b) reconstructed SDI images with (c) AIA 304 A and (d) 1600˚ A˚ images. 

windowed images, whereas panel (c) displays the corresponding spectral amplitude profiles. Following the SIRAF 

guidelines, a Hanning window is applied to the windowed images to effectively mitigate spectral leakage. 

The corrected images, consistent with the results shown in Figure 5, demonstrate a significant improvement in 

clarity and contrast, which is due to the fact that the Fourier spectrum of the images before correction was 

concentrated in the low frequencies, while the mid- to high-frequency energy is noticeably increased after 

correction. This change can be easily seen by comparing panels (b) in Figures 7 and 8. The spectral amplitude 

profiles presented in panels (c) of Figures 7 and 8 reveal that the normalized cutoff frequency, which was below 

0.05 before correction, rises to approximately 0.15 after correction. The substantial increase quantitatively 

confirms a more than threefold improvement in spatial resolution. 
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Figure 9 compares the corrected SDI images with AIA 304 A and AIA 1600˚ A images. The structural˚ features 

in the areas marked by squares and circles demonstrate that the spatial resolution of the corrected images has 

significantly improved. Moreover, these features are well consistent with those in the AIA 304 A and AIA 1600˚ A 

images, further validating the effectiveness and rationale of the SPIBOA method. 

Table 1: Comparison of Spatial Resolution before and after Correction 

Observation Date Time (UT) Flare class Resolution before(′′) Resolution after(′′) Improved by (×) 

2023 May 9 03:58:15 M6.5 12.48 4.64 2.69 

2023 November 24 09:33:34 M1.2 14.05 4.27 3.29 

2024 February 22 22:35:43 X6.4 14.83 3.90 3.80 

2024 May 08 21:41:28 X1.0 15.23 3.87 3.94 

Average     3.43 

5 DISCUSSION 

As shown above, the SPIBOA procedure significantly improves the quality of SDI images. In this section, we 

discuss some important factors, tailored strategies, essential considerations, and precautions for the practical 

application of the procedure. 

5.1 The essential elements for the implementation of SPIBOA 

• Prior Constraints: Utilizing the design and manufacturing parameters of the SDI optical system as 

fundamental constraints, we determine the equivalent aperture of the imaging system, and then deduce the psf 

of the optical system by refining the wavefront aberration corresponding to this aperture. This approach 

promotes the efficiency of the optimization procedure and also guarantees that the results more conform to the 

inherent physical constraints of the optical system. More specifically, the SDI has an aperture of 68 mm and 

works in the 121.6 nm waveband, corresponding to a diffraction limit of 0.183 ′′. The designed pixel resolution 

is approximately 0.5′′with an FOV of 40′ and an image dimension of 4608×4608 pixels. Such a configuration 

indicates that the digital imaging process is undersampled. Therefore, to accurately estimate the wavefront 

aberration across the entire aperture, it is imperative to magnify the observed image by a factor of 2.73, 

equivalent to 0.5 divided by 0.183. 

• Initial Value Selection: The choice of initial values is crucial for optimization problems. Taking into account 

the structural similarity and comparable pixel resolution between SDI and AIA 304 A images˚ (AIA 304 A 

image has a pixel resolution of 0.6˚ ′′, whereas the designed resolution of SDI is 0.5′′), together with that they 

both capture full-disk images of the Sun, we select AIA 304 A images that are˚ temporally close to the SDI 

observations as the initial values for Iref. We subsequently utilize the prowess of CNNs to generate ideal SDI 

images under optimal imaging conditions. The advantage of this method is its ability to exploit the 

sophisticated nonlinear fitting capabilities of DNNs, thereby minimizing any potential nonlinear discrepancies 

between AIA 304 A and actual SDI images. The alignment is achieved˚ through linear constraints, which 

enables a more accurate estimation of the psf . During the process, we utilize data obtained from ground-based 

tests as the initial value of the wavefront. 
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• Data Samples: An extensive and diverse dataset is indispensable for training deep learning models. Over the 

past two years, SDI has accumulated a vast cube of observational data, from which we carefully curated a 

balanced selection that encompasses data from various solar features: the solar limb, quiet regions, active 

regions and flare regions ranging from C to X class. Each of these categories is paired with corresponding AIA 

304 A images. The balanced training dataset is crucial for optimizing our˚ model, which has a ratio of 1:1:1:2 

for solar limb, quiet regions, active regions and flare regions. 

 

Fig.10: Cutout of observed (left panel) and reconstructed (right panel) SDI image of 2024 May 8. The reconstructed 

image shows the ring artifacts around the brightening area. 

• Preprocessing: For the purpose of improving the accuracy of the optimization process and accelerating the 

training phase, it is necessary to coalign the observed SDI images with the AIA 304 A images within˚ the same 

FOV. Additionally, it is important to mitigate the adverse effects of cosmic rays and thermal noise, which can 

interfere with the image quality and accuracy of the optimization. 

5.2 Precautions in the Application of SPIBOA 

• Image correction is fundamentally a deconvolution process in linear system theory, equivalent to inverse 

filtering in the frequency domain. However, the so-called ‘ringing’ artifacts are often introduced due to model 

inaccuracies and information loss. These artifacts come from the loss of high-frequency image information 

during degradation, which is particularly noticeable in high-frequency image areas. Severe loss of image 

information results in steep changes in the corresponding inverse filter, which leads to oscillations of the 

resulting image in areas with sharp intensity change. Notably, ringing is especially prominent in regions of SDI 

image with abrupt intensity changes, such as rapid brightening or intense flares. Figure 10 compares the flare 

region of the observed SDI image on 2024 May 8 with the corrected image. The corrected image (right panel) 

exhibits typical ringing artifacts, characterized by darker areas with intensity discontinuities within high 

contrast regions. 

• The SPIBOA training program incorporates a wide variety of image samples from a broad temporal range and 

diverse locations on the Sun into a cohesive training structure, so as to produce a psf that effectively captures 
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the average impact of linear distortions across the entire FOV. However, the current version of SPIBOA does 

not address the temporal variations or spatial inconsistencies that are inherent in SDI imaging system, which 

may also introduce inaccuracy. This likely explains the varying improvement factors in spatial resolution after 

applying SPIBOA corrections to the flares listed in Table 1, which occurred at different locations on the Sun. 

Additionally, SPIBOA currently lacks the ability to provide a precise, quantitative assessment of these potential 

errors. 

6 CONCLUSION 

This paper concentrates on correcting LST/SDI observational data to enhance image quality, with the specific goals 

of estimating the psf of the SDI imaging system and performing deconvolution corrections on observed SDI images, 

despite the unknown real SDI image and optical system function. By leveraging a large sample of observational 

data and employing deep learning techniques, we introduce a bivariate optimization-based imaging model 

estimation algorithm called SPIBOA. 

The outcomes of our research are encouraging and demonstrate a substantial enhancement in the spatial 

resolution of corrected images. Analysis of sample data has shown an average resolution improvement by over 

three times, accompanied by a notable decrease in noise levels. We have successfully developed and implemented 

the SDI data correction software package based on the SPIBOA algorithm, which is currently used to process 

routine SDI observational data. Furthermore, it incorporates parallel algorithms, which enables efficient and 

prompt processing of observational data on a single computing node. 

We plan to keep our efforts in the future to conduct comprehensive long-term evaluations and enhancements 

related to the topics discussed in Section 5.2. Additionally, we will be attentive to addressing any emerging 

challenges. This ongoing commitment will ensure strong support for the scientific utilization of SDI observational 

data, promoting scientific outputs and advancing reliability in our research endeavors. 

The successful deployment of the SDI data correction software package makes it feasible to extend this 

technique to the other two instruments of the LST payload, namely the WST and SCI, when required. It also 

pioneers innovative methods for identifying and rectifying issues within the optical systems of astronomical 

telescopes. Furthermore, it may pave the way for improvements and refinements in astrophysical data and research. 
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